R/coev_make_standata.R
coev_make_standata.Rd
Make the data list for the Stan model. The function takes a dataset, phylogeny, and a set of variables and performs the necessary computations (e.g., cutting up the tree into segments, computing branch lengths, determining parent and child nodes) for the Stan model.
coev_make_standata(
data,
variables,
id,
tree,
effects_mat = NULL,
complete_cases = FALSE,
dist_mat = NULL,
dist_cov = "exp_quad",
measurement_error = NULL,
prior = NULL,
scale = TRUE,
estimate_correlated_drift = TRUE,
estimate_residual = TRUE,
log_lik = FALSE,
prior_only = FALSE
)
An object of class data.frame
(or one that can be coerced
to that class) containing data of all variables used in the model.
A named list identifying variables that should coevolve in
the model and their associated response distributions as character strings
(e.g. list(var1 = "bernoulli_logit", var2 = "ordered_logistic")
).
Must identify at least two variables. Variable names must refer to valid
column names in data. Currently, the only supported response distributions
are bernoulli_logit
, ordered_logistic
,
poisson_softplus
, negative_binomial_softplus
, normal
,
and gamma_log
.
A character of length one identifying the variable in the data that links rows to tips on the phylogeny. Must refer to a valid column name in the data. The id column must exactly match the tip labels in the phylogeny.
A phylogenetic tree object of class phylo
or
multiPhylo
. The tree(s) must be rooted and must include positive
non-zero branch lengths. All trees in multiPhylo
objects must have
the same number of internal nodes and branches.
(optional) A boolean matrix with row and column names exactly matching the variables declared for the model. If not specified, all cross-lagged effects will be estimated in the model. If specified, the model will only estimate cross-lagged effects where cells in the matrix are TRUE and will ignore cross-lagged effects where cells in the matrix are FALSE. In the matrix, columns represent predictor variables and rows represent outcome variables. All autoregressive effects (e.g., X -> X) must be TRUE in the matrix.
(optional) Logical. If FALSE
(default), all
missing values are imputed by the model. If TRUE
, taxa with missing
data are excluded.
(optional) A distance matrix with row and column names exactly matching the tip labels in the phylogeny. If specified, the model will additionally control for spatial location by including a separate Gaussian Process over locations for every coevolving variable in the model.
A string specifying the covariance kernel used for Gaussian
Processes over locations. Currently supported are "exp_quad"
(exponentiated-quadratic kernel; default), "exponential"
(exponential kernel), and "matern32"
(Matern 3/2 kernel).
(optional) A named list of coevolving variables and
their associated columns in the dataset containing standard errors. Only
valid for normally-distributed variables. For example, if we declare
variables = list(x = "normal", y = "normal")
, then we could set
measurement_error = list(x = "x_std_err")
to tell the function to
include measurement error on x
using standard errors from the
x_std_err
column of the dataset.
(optional) A named list of priors for the model. If not
specified, the model uses default priors (see help(coev_fit)
).
Alternatively, the user can specify a named list of priors. The list must
contain non-duplicated entries for any of the following parameters: the
autoregressive effects (A_diag
), the cross effects
(A_offdiag
), the Cholesky factor for the drift matrix (L_R
),
the drift std. dev. parameters (Q_sigma
), the continuous time
intercepts (b
), the ancestral states for the traits
(eta_anc
), the cutpoints for ordinal variables (c
), the
overdispersion parameters for negative binomial variables (phi
),
the shape parameters for gamma variables (shape
), the sigma
parameters for Gaussian Processes over locations (sigma_dist
), the
rho parameters for Gaussian Processes over locations (rho_dist
), the
residual standard deviations when there are repeated observations
(sigma_residual
), and the Cholesky factor for the residual
correlations when there are repeated observations (L_residual
).
These must be entered with valid prior strings, e.g.
list(A_offdiag = "normal(0, 2)")
.
Logical. If TRUE
(default), variables following the
normal
and gamma_log
response distributions are scaled before
fitting the model. Continuous variables following the normal
distribution are standardised (e.g., mean centered and divided by their
standard deviation) and positive real variables following the
gamma_log
distribution are divided by the mean value without
centering. This approach is recommended when using default priors to
improve efficiency and ensure accurate inferences. If FALSE
,
variables are left unscaled for model fitting. In this case, users should
take care to set sensible priors on variables.
Logical. If TRUE
(default), the model
estimates the off-diagonals for the $$Q$$ drift matrix (i.e., correlated
drift). If FALSE
, the off-diagonals for the $$Q$$ drift matrix
are set to zero.
Logical. If TRUE
(default), the model
estimates residual standard deviations and residual correlations when there
are repeated observations for taxa. If FALSE
, residual standard
deviations and residual correlations are not estimated. The latter may be
preferable in cases where repeated observations are sparse (e.g., only some
taxa have only few repeated observations). This argument only applies when
repeated observations are present in the data.
Logical. Set to FALSE
by default. If TRUE
, the
model returns the pointwise log likelihood, which can be used to calculate
WAIC and LOO.
Logical. If FALSE
(default), the model is fitted to
the data and returns a posterior distribution. If TRUE
, the model
samples from the prior only, ignoring the likelihood.
A list containing the data for fitting the dynamic coevolutionary model in Stan
For further details, see help(coev_fit)
Ringen, E., Martin, J. S., & Jaeggi, A. (2021). Novel phylogenetic methods
reveal that resource-use intensification drives the evolution of "complex"
societies. EcoEvoRXiv. doi:10.32942/osf.io/wfp95
Sheehan, O., Watts, J., Gray, R. D., Bulbulia, J., Claessens, S., Ringen,
E. J., & Atkinson, Q. D. (2023). Coevolution of religious and political
authority in Austronesian societies. Nature Human Behaviour,
7(1), 38-45. 10.1038/s41562-022-01471-y
# make stan data
coev_make_standata(
data = authority$data,
variables = list(
political_authority = "ordered_logistic",
religious_authority = "ordered_logistic"
),
id = "language",
tree = authority$phylogeny
)
#> $N_tips
#> [1] 97
#>
#> $N_tree
#> [1] 1
#>
#> $N_obs
#> [1] 97
#>
#> $J
#> [1] 2
#>
#> $N_seg
#> [1] 193
#>
#> $node_seq
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 98 99 101 192 193 102 111 114 115 116 117 118 100 188
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 119 120 125 126 127 128 156 121 157 178 171 158
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 122 129 164 165 185 179 172 166 170 180 112 167
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 174 130 123 103 182 181 124 113 105 159 106 176
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 131 104 189 151 177 173 184 190 168 183 107 152
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 160 175 132 133 153 155 134 108 135 139 149 109
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 186 169 161 146 191 140 162 141 110 136 150 142
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 187 143 147 144 145 163 148 137 4 95 96 138
#> [,99] [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108]
#> [1,] 17 70 62 92 53 65 61 44 93 14
#> [,109] [,110] [,111] [,112] [,113] [,114] [,115] [,116] [,117] [,118]
#> [1,] 29 66 43 45 42 58 94 40 75 60
#> [,119] [,120] [,121] [,122] [,123] [,124] [,125] [,126] [,127] [,128]
#> [1,] 48 88 52 8 154 63 64 79 77 31
#> [,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136] [,137] [,138]
#> [1,] 51 28 91 82 74 36 47 83 55 69
#> [,139] [,140] [,141] [,142] [,143] [,144] [,145] [,146] [,147] [,148]
#> [1,] 46 76 5 23 54 32 20 90 25 1
#> [,149] [,150] [,151] [,152] [,153] [,154] [,155] [,156] [,157] [,158]
#> [1,] 3 50 2 30 15 97 68 38 16 41
#> [,159] [,160] [,161] [,162] [,163] [,164] [,165] [,166] [,167] [,168]
#> [1,] 22 34 33 59 26 73 7 6 80 37
#> [,169] [,170] [,171] [,172] [,173] [,174] [,175] [,176] [,177] [,178]
#> [1,] 86 18 81 10 21 35 27 71 84 85
#> [,179] [,180] [,181] [,182] [,183] [,184] [,185] [,186] [,187] [,188]
#> [1,] 39 9 24 67 49 11 57 56 72 78
#> [,189] [,190] [,191] [,192] [,193]
#> [1,] 12 13 87 89 19
#>
#> $parent
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 0 98 99 98 192 101 102 111 114 115 116 117 99 118
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 118 119 120 125 126 127 128 120 156 126 156 157
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 121 128 158 164 119 178 171 165 157 179 111 166
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 171 129 122 102 180 180 121 112 103 158 105 174
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 130 103 114 129 176 172 179 189 167 182 106 151
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 159 174 131 132 152 153 133 107 134 135 132 108
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 185 168 160 134 190 139 161 140 108 135 149 141
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 186 142 146 143 140 162 133 136 104 193 192 137
#> [,99] [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108]
#> [1,] 116 163 155 191 143 155 151 150 190 113
#> [,109] [,110] [,111] [,112] [,113] [,114] [,115] [,116] [,117] [,118]
#> [1,] 170 152 150 149 148 146 189 147 167 130
#> [,119] [,120] [,121] [,122] [,123] [,124] [,125] [,126] [,127] [,128]
#> [1,] 145 187 144 109 153 154 154 164 169 175
#> [,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136] [,137] [,138]
#> [1,] 144 184 191 123 166 173 145 123 138 163
#> [,139] [,140] [,141] [,142] [,143] [,144] [,145] [,146] [,147] [,148]
#> [1,] 139 168 104 183 138 175 125 117 181 193
#> [,149] [,150] [,151] [,152] [,153] [,154] [,155] [,156] [,157] [,158]
#> [1,] 101 142 100 170 112 100 161 172 115 148
#> [,159] [,160] [,161] [,162] [,163] [,164] [,165] [,166] [,167] [,168]
#> [1,] 183 177 177 147 181 165 109 107 127 173
#> [,169] [,170] [,171] [,172] [,173] [,174] [,175] [,176] [,177] [,178]
#> [1,] 185 188 122 110 178 176 184 162 124 124
#> [,179] [,180] [,181] [,182] [,183] [,184] [,185] [,186] [,187] [,188]
#> [1,] 131 110 182 160 141 105 136 137 159 169
#> [,189] [,190] [,191] [,192] [,193]
#> [1,] 106 113 187 186 188
#>
#> $ts
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] -99 0.02400105 0.06746978 0.09290211 0.007513379 0.1544719 0.01876492
#> [,8] [,9] [,10] [,11] [,12] [,13]
#> [1,] 0.007647891 0.005921474 0.004474085 0.003112665 0.004550234 0.2668098
#> [,14] [,15] [,16] [,17] [,18] [,19]
#> [1,] 0.007280485 0.008624489 0.01203026 0.01179292 0.01328848 0.001003278
#> [,20] [,21] [,22] [,23] [,24] [,25]
#> [1,] 0.004111867 0.0007227681 0.032275 0.002663366 0.01251495 0.01140792
#> [,26] [,27] [,28] [,29] [,30] [,31]
#> [1,] 0.009187734 0.02877621 0.03426191 0.02296127 0.001496488 0.08805246
#> [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.03865207 0.04334719 0.04463487 0.1026653 0.06633366 0.1961358 0.06357062
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45]
#> [1,] 0.1499919 0.1304844 0.1446565 0.2737961 0.07381795 0.08128446 0.2085895
#> [,46] [,47] [,48] [,49] [,50] [,51] [,52]
#> [1,] 0.09694968 0.0381307 0.2084207 0.01451076 0.07404825 0.07257567 0.06386799
#> [,53] [,54] [,55] [,56] [,57] [,58] [,59]
#> [1,] 0.3184708 0.2200117 0.03150443 0.2128979 0.2268019 0.04408181 0.1672533
#> [,60] [,61] [,62] [,63] [,64] [,65] [,66]
#> [1,] 0.1365735 0.0954154 0.09996007 0.147063 0.207362 0.1689723 0.01295665
#> [,67] [,68] [,69] [,70] [,71] [,72]
#> [1,] 0.06611392 0.002242045 0.003349449 0.101018 0.005471434 0.003639409
#> [,73] [,74] [,75] [,76] [,77] [,78] [,79]
#> [1,] 0.03901317 0.02251309 0.4078498 0.1435542 0.104351 0.04982802 0.179864
#> [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 0.04353043 0.01408332 0.02992327 0.07832502 0.07885602 0.068061 0.01080743
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93]
#> [1,] 0.06708163 0.012016 0.05588993 0.008448661 0.06148921 0.05073236 0.1211957
#> [,94] [,95] [,96] [,97] [,98] [,99] [,100]
#> [1,] 0.05780218 0.3307949 0.819174 0.8411389 0.03531966 0.6605537 0.08130539
#> [,101] [,102] [,103] [,104] [,105] [,106] [,107]
#> [1,] 0.1963106 0.145949 0.09202333 0.1979781 0.3699995 0.1133132 0.334521
#> [,108] [,109] [,110] [,111] [,112] [,113] [,114]
#> [1,] 0.4120067 0.5232241 0.2750419 0.1170188 0.1852651 0.09123757 0.1596263
#> [,115] [,116] [,117] [,118] [,119] [,120] [,121]
#> [1,] 0.3824937 0.1039215 0.4870029 0.467679 0.09569461 0.1120389 0.09728522
#> [,122] [,123] [,124] [,125] [,126] [,127] [,128]
#> [1,] 0.1842164 0.2140188 1.852777e-06 0.0002823631 0.5991136 0.17916 0.2670168
#> [,129] [,130] [,131] [,132] [,133] [,134] [,135]
#> [1,] 0.1000644 0.3638327 0.1631798 0.4613608 0.5553909 0.369052 0.1010677
#> [,136] [,137] [,138] [,139] [,140] [,141] [,142]
#> [1,] 0.4624725 0.03811939 0.1011301 0.2070137 0.3271607 0.3973098 0.3172446
#> [,143] [,144] [,145] [,146] [,147] [,148] [,149]
#> [1,] 0.04126911 0.2720193 0.6599075 0.6972758 0.4483897 0.8830948 0.8922247
#> [,150] [,151] [,152] [,153] [,154] [,155] [,156]
#> [1,] 0.1264579 0.69307 0.5365641 0.5235932 0.6936258 0.170763 0.5878788
#> [,157] [,158] [,159] [,160] [,161] [,162] [,163]
#> [1,] 0.7063449 0.1029101 0.3205798 0.3756816 0.3756818 0.1154087 0.4500572
#> [,164] [,165] [,166] [,167] [,168] [,169] [,170]
#> [1,] 0.6066956 0.1938508 0.3173821 0.6482094 0.375722 0.5982723 0.6878538
#> [,171] [,172] [,173] [,174] [,175] [,176] [,177]
#> [1,] 0.6134284 0.13878 0.6374391 0.408668 0.3721702 0.1587177 0.4347266
#> [,178] [,179] [,180] [,181] [,182] [,183] [,184]
#> [1,] 0.4347266 0.408814 0.1404475 0.4603031 0.2793754 0.1426384 0.4313842
#> [,185] [,186] [,187] [,188] [,189] [,190] [,191]
#> [1,] 0.1425432 0.08492627 0.4292177 0.1960201 0.4215052 0.4360928 0.1368661
#> [,192] [,193]
#> [1,] 0.2043183 0.7023055
#>
#> $tip
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,75] [,76] [,77] [,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86]
#> [1,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96] [,97] [,98]
#> [1,] 0 0 0 0 0 0 0 0 1 1 1 0
#> [,99] [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,109] [,110] [,111] [,112] [,113] [,114] [,115] [,116] [,117] [,118]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,119] [,120] [,121] [,122] [,123] [,124] [,125] [,126] [,127] [,128]
#> [1,] 1 1 1 1 0 1 1 1 1 1
#> [,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136] [,137] [,138]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,139] [,140] [,141] [,142] [,143] [,144] [,145] [,146] [,147] [,148]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,149] [,150] [,151] [,152] [,153] [,154] [,155] [,156] [,157] [,158]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,159] [,160] [,161] [,162] [,163] [,164] [,165] [,166] [,167] [,168]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,169] [,170] [,171] [,172] [,173] [,174] [,175] [,176] [,177] [,178]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,179] [,180] [,181] [,182] [,183] [,184] [,185] [,186] [,187] [,188]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [,189] [,190] [,191] [,192] [,193]
#> [1,] 1 1 1 1 1
#>
#> $effects_mat
#> political_authority religious_authority
#> political_authority 1 1
#> religious_authority 1 1
#>
#> $num_effects
#> [1] 4
#>
#> $y
#> political_authority religious_authority
#> [1,] 4 4
#> [2,] 3 3
#> [3,] 3 3
#> [4,] 3 3
#> [5,] 4 3
#> [6,] 1 1
#> [7,] 2 3
#> [8,] 1 4
#> [9,] 4 3
#> [10,] 3 3
#> [11,] 4 1
#> [12,] 2 3
#> [13,] 3 3
#> [14,] 1 1
#> [15,] 4 4
#> [16,] 4 4
#> [17,] 4 4
#> [18,] 4 4
#> [19,] 4 4
#> [20,] 2 1
#> [21,] 3 3
#> [22,] 1 1
#> [23,] 1 1
#> [24,] 3 3
#> [25,] 3 3
#> [26,] 2 2
#> [27,] 3 3
#> [28,] 3 3
#> [29,] 2 1
#> [30,] 2 2
#> [31,] 4 4
#> [32,] 4 4
#> [33,] 3 1
#> [34,] 1 4
#> [35,] 4 4
#> [36,] 4 4
#> [37,] 4 4
#> [38,] 4 4
#> [39,] 4 4
#> [40,] 1 1
#> [41,] 4 4
#> [42,] 4 4
#> [43,] 4 4
#> [44,] 4 4
#> [45,] 3 3
#> [46,] 4 4
#> [47,] 3 4
#> [48,] 4 4
#> [49,] 4 4
#> [50,] 4 3
#> [51,] 4 4
#> [52,] 4 4
#> [53,] 4 4
#> [54,] 3 3
#> [55,] 3 3
#> [56,] 4 4
#> [57,] 4 4
#> [58,] 1 3
#> [59,] 4 4
#> [60,] 4 4
#> [61,] 3 3
#> [62,] 4 1
#> [63,] 4 4
#> [64,] 4 4
#> [65,] 4 4
#> [66,] 4 4
#> [67,] 3 3
#> [68,] 3 4
#> [69,] 1 2
#> [70,] 1 4
#> [71,] 1 4
#> [72,] 3 3
#> [73,] 3 1
#> [74,] 2 2
#> [75,] 1 3
#> [76,] 4 4
#> [77,] 4 4
#> [78,] 3 3
#> [79,] 1 2
#> [80,] 3 3
#> [81,] 4 4
#> [82,] 3 3
#> [83,] 4 3
#> [84,] 4 4
#> [85,] 4 4
#> [86,] 3 4
#> [87,] 1 4
#> [88,] 1 4
#> [89,] 4 4
#> [90,] 3 3
#> [91,] 3 3
#> [92,] 4 4
#> [93,] 4 4
#> [94,] 4 4
#> [95,] 3 3
#> [96,] 4 4
#> [97,] 3 3
#>
#> $miss
#> political_authority religious_authority
#> [1,] 0 0
#> [2,] 0 0
#> [3,] 0 0
#> [4,] 0 0
#> [5,] 0 0
#> [6,] 0 0
#> [7,] 0 0
#> [8,] 0 0
#> [9,] 0 0
#> [10,] 0 0
#> [11,] 0 0
#> [12,] 0 0
#> [13,] 0 0
#> [14,] 0 0
#> [15,] 0 0
#> [16,] 0 0
#> [17,] 0 0
#> [18,] 0 0
#> [19,] 0 0
#> [20,] 0 0
#> [21,] 0 0
#> [22,] 0 0
#> [23,] 0 0
#> [24,] 0 0
#> [25,] 0 0
#> [26,] 0 0
#> [27,] 0 0
#> [28,] 0 0
#> [29,] 0 0
#> [30,] 0 0
#> [31,] 0 0
#> [32,] 0 0
#> [33,] 0 0
#> [34,] 0 0
#> [35,] 0 0
#> [36,] 0 0
#> [37,] 0 0
#> [38,] 0 0
#> [39,] 0 0
#> [40,] 0 0
#> [41,] 0 0
#> [42,] 0 0
#> [43,] 0 0
#> [44,] 0 0
#> [45,] 0 0
#> [46,] 0 0
#> [47,] 0 0
#> [48,] 0 0
#> [49,] 0 0
#> [50,] 0 0
#> [51,] 0 0
#> [52,] 0 0
#> [53,] 0 0
#> [54,] 0 0
#> [55,] 0 0
#> [56,] 0 0
#> [57,] 0 0
#> [58,] 0 0
#> [59,] 0 0
#> [60,] 0 0
#> [61,] 0 0
#> [62,] 0 0
#> [63,] 0 0
#> [64,] 0 0
#> [65,] 0 0
#> [66,] 0 0
#> [67,] 0 0
#> [68,] 0 0
#> [69,] 0 0
#> [70,] 0 0
#> [71,] 0 0
#> [72,] 0 0
#> [73,] 0 0
#> [74,] 0 0
#> [75,] 0 0
#> [76,] 0 0
#> [77,] 0 0
#> [78,] 0 0
#> [79,] 0 0
#> [80,] 0 0
#> [81,] 0 0
#> [82,] 0 0
#> [83,] 0 0
#> [84,] 0 0
#> [85,] 0 0
#> [86,] 0 0
#> [87,] 0 0
#> [88,] 0 0
#> [89,] 0 0
#> [90,] 0 0
#> [91,] 0 0
#> [92,] 0 0
#> [93,] 0 0
#> [94,] 0 0
#> [95,] 0 0
#> [96,] 0 0
#> [97,] 0 0
#>
#> $tip_id
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#> [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#> [51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#> [76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
#>
#> $prior_only
#> [1] 0
#>